

Fondo Europeo de Desarrollo Regional (FEDER)

Una manera de hacer Europa

GUÍA PARA LA JUSTIFICACIÓN DE UN AHORRO DE UN 10% DE CONSUMO DE ENERGÍA FINAL

1.- Factores de conversión de emisiones de CO2 a energía final:

FACTORES DE CONVERSIÓN A ENERGÍA FINAL (EF)						
Fuente de energía	Emisiones de CO ₂ (kg CO2/año)					
Electricidad	0,331					
Gasóleo calefacción	0,311					
Gases licuados del petróleo (butano, propano)	0,254					
Gas natural	0,252					
Carbón	0,472					
Biomasa no densificada (leña)	0,018					
Biomasa densificada (pellets)	0,018					

- imagen 1 - factores de conversión a EF -

EF: energía final

Emisiones CO2: emisiones de dióxido de carbono

2.- Cómo obtener los datos de partida:

2.1.- El valor de las **emisiones de CO2** se puede obtener en el Anexo II Calificación Energética del Edificio, apartado 1. Calificación energética del edificio en emisiones.

1. CALIFICACIÓN ENERGÉTICA DEL EDIFICIO EN EMISIONES

INDICADOR GLOBA	AL .	INDICADORES PARCIALES			
<8.4 A 8.4-13.6 B		CALEFACCIÓN		AC\$	
13.6-21.1 C 21.1-32.4 D		Emisiones calefacción [kgCO2/m² año]	E	Emisiones ACS [kgCO2/m² año]	G
32.4-66.3 E	58.1 E	42.11		12.98	
66.3-79.6 F ≥79.6 G		REFRIGERACIÓN		ILUMINACIÓN	
Emisiones globales [kgCO	Emisiones refrigeración [kgCO2/m² año] 3.04	С	Emisiones iluminación [kgCO2/m² año] -	-	

La calificación global del edificio se expresa en términos de dióxido de carbono liberado a la atmósfera como consecuencia del consumo energético del mismo.

	kgCO2/m² año	gCO2/año	4
Emisiones CO2 por consumo eléctrico	32.14	41566.91	
Emisiones CO2 por otros combustibles	26.00	33626.74	
•	Ť		-

- imagen 2 – indicadores globales y parciales de emisiones de CO2 –

El valor de emisiones globales puede obtenerse del cuadro resumen *Emisiones de CO2 por consumo eléctrico / otros combustibles*, teniendo en cuenta que en este cuadro aparecen los valores en dos unidades de medida diferentes (kgCO2/m² año y kgCO2/año).

2.2.- El tipo de combustible puede obtenerse del Anexo I. Descripción de las características energéticas del edificio, punto 3. Instalaciones térmicas.

Fondo Europeo de Desarrollo Regional (FEDER)

Una manera de hacer Europa

3. INSTALACIONES TÉRMICAS

Generadores de calefacción

TOTALES

Nombre	Tipo	Potencia nominal [kW]	Rendimiento Estacional [%	Tipo de Energía	Modo de obtención	
Sólo calefacción(60%)/ estufas eléctricas	Efecto Joule		100.0	Electricidad	Estimado	
Calefacción y ACS (40%)/ Gas	Caldera Estándar	24.0	56.8	Gas Natural	Estimado	
TOTALES	Calefacción					

Instalaciones de Agua Caliente Sanitaria

Demanda diaria de A	ACS a 60° (litros/día)	1612.8			_	
Nombre	Tipo	Potencia nominal [kW]	Rendimiento Estacional [%	Tipo de Energía	Modo de obtención	
Sólo ACS (60%) /Termoeléctrico	Efecto Joule		100.0	Electricidad	Estimado	4
Calefacción y ACS	Caldera Estándar	24.0	56.8	Gas Natural	Estimado	7

- imagen 3 - tipo de combustible y porcentajes por tipo de combustible -

3.- Ejemplo de cálculo, para obtener los valores de consumo de energía final:

De acuerdo con la información que aparece en las imágenes anteriores, vamos a realizar un ejemplo para calcular la energía final consumida. Las fórmulas consideradas para el cálculo del consumo de EF (energía final), son:

$$EF = rac{Emisiones\ de\ CO2}{factor\ de\ conversión\ de\ emisiones\ de\ CO2\ a\ EF}$$

EF: energía final

Tomando como punto de partida las emisiones de CO2 (imágenes 1 y 2) y el tipo de combustible (imagen 3):

FACTORES DE CONVERSIÓN A ENERGÍA FINAL (EF)						
Fuente de energía Emisiones de CO ₂ (kg CO2/año)						
Electricidad		0,331				
Gas natural		0,252				

Valor de emisiones CO2 (kgCO2/m2 a			Factor de conversión considerado en función de la fuente de energía (kgCO2/kWh/año)	Consumo de energía final (EF) (kWh/m2 año)	
Por consumo eléctrico		32,14		0,331	32,14 / 0,331 = 97,10
Por otros combustibles (gas natural)		26,00		0,252	26,00 / 0,252 = 103,17
Consumo total de energía final (EF)	F) 97,10 + 103,47 = 200,57 kWh/m2 año				

4.- Para justificar la reducción del 10 % en el consumo de EF del estado rehabilitado o reformado, respecto al estado actual, será necesario realizar estos cálculos con los datos obtenidos del certificado de eficiencia energética del estado actual y los extraídos del certificado de eficiencia energética del estado rehabilitado o reformado.

Una vez obtenidos los valores del consumo de EF (energía final) en el estado actual y rehabilitado, se podrán comparar ambos valores para justificar la reducción del consumo de EF del 10%.